
Physics-Constrained Backdoor Attacks on
Power System Fault Localization

Jianing Baia,b, Ren Wanga, Zuyi Lia
aDepartment of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616 US

bDepartment of Mechanical Engineering, Peking University, Beijing, China

Abstract—The advances in deep learning (DL) tech-
niques have the potential to deliver transformative
technological breakthroughs to numerous complex
tasks in modern power systems that suffer from
increasing uncertainty and nonlinearity. However, the
vulnerability of DL has yet to be thoroughly explored
in power system tasks under various physical con-
straints. This work, for the first time, proposes a
novel physics-constrained backdoor poisoning attack,
which embeds the undetectable attack pattern into
the learned model and only performs the attack when
it encounters the corresponding trigger. The paper
illustrates the proposed attack on the real-time fault
line localization application. Furthermore, the simula-
tion results on the 68-bus power system demonstrate
that DL-based fault line localization methods are
not robust to our proposed attack, indicating that
backdoor poisoning attacks pose real threats to DL
implementations in power systems.

Index Terms—power system, deep learning, back-
door attack, physical constraints, fault localization

I. INTRODUCTION

The modern power system has displayed surpris-
ing behaviors due to the high uncertainty brought on
by renewable energy, the high nonlinearity resulting
from the interconnection of power grids, and the
high diversity of data collected by various sensors.
Deep learning (DL)-based approaches, in contrast to
many traditional approaches that struggle to man-
age systems with increasing complexity, provide
promising solutions for complex problems like load
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and power forecasting [1] and stability control [2].
Furthermore, fault detection and localization, our
primary studying object, plays an essential role in
the operations of electric grids and has also been
advanced by DL methods [3, 4, 5]. However, the
introduction of DL raises new robustness concerns
beyond conventional threads like the false data
injection attack (FDIA), which aims to manipulate
sensor measurements to perturb the results of power
system state estimation without being detected [6].

Deep neural networks (DNNs), stacked by multi-
ple layers and can identify underlying relationships
in a piece of data, are the foundation of deep
learning. Recent works in the computer vision do-
main have demonstrated DNNs’ vulnerability when
facing training-phase backdoor poisoning attacks [7,
8], and inference-phase adversarial attacks [9, 10].
When considering power system tasks with physical
constraints, there remain substantial difficulties in
designing success attacks as these attacks should
simultaneously achieve a high attack success rate
and satisfy physical constraints to bypass detection
methods. The vulnerability of post-trained DNNs
against inference-phase adversarial attacks has at-
tracted a great deal of attention in power system
tasks [11, 12]. However, they need information on
models’ parameters or model outputs and cannot
achieve a high attack success rate by only perturb-
ing a very small number of entries. A more stealthy
and harmful attack type, the backdoor poisoning
attack (a.k.a. Trojan attack), happens during the
training phase and could cause erroneous behavior
of DNNs when polluting a small portion of training



data. DL systems in downstream applications could
suffer severe damage if DNNs are not robust against
backdoor assaults. To our best knowledge, no work
has considered training-phase backdoor poisoning
attacks in power systems (PSs).

The risk of backdoor attacks on steady-state fault
line localization techniques based on DL is exam-
ined in this work. Specifically, we take the PSs’
structures and physical laws into account to design
the training-phase backdoor poisoning attacks. We
summarize our contributions as follows: (1) We
design a novel physics-constrained backdoor attack
strategy on DL-based fault line localization tasks in
PSs; (2) We consider different threat models where
attackers can directly manipulate training data or
only access measurements; (3) By conducting fault
localization simulations on the IEEE 68-bus power
system, we demonstrate that the proposed physics-
constrained backdoor attacks have the power to fail
predictions with the pre-designed triggers by using
just a small number of poisoning training data while
still maintaining a high accuracy on clean data.

II. PRELIMINARIES

A. Power Grids and Fault Localization

The topology of power grids can be abstracted
as networks G(N , E) that include two main com-
ponents: N buses (nodes) and E transmission lines
(edges) that connect these buses. For an d-bus
power grid, before the fault happens, the bus volt-
ages u0 ∈ Cd, currents i0 ∈ Cd, admittance matrix
Y 0 ∈ Cd×d follow the Ohm’s law

i0 = Y 0u0 (1)

where y0ij denotes the admittance between the bus i
and j. Analogously, when the fault occurs, the bus
voltages u

′ ∈ Cd and the currents i
′ ∈ Cd also obey

Ohm’s law. We recommend readers to Ref. [3] for
more details.

This work mainly focuses on predicting power
system fault localization in the steady state. Al-
though there are various types of methods to predict
fault location in PSs, DL-based methods leverag-
ing features of currents provide state-of-art results
[13, 14]. Using current signals as the input data
in training when a fault occurs on different fault

lines, the current varies with the fault position
in real time and has relatively larger fluctuation
through extensive experiments. Therefore they can
efficiently determine the faults’ location in real time
and perform better in a large number of classifica-
tion experiments compared with other signals.

B. Deep Neural Networks

During the DL training, all parameters of DNNs
are optimized to minimize a loss function for in-
creasing the prediction probabilities of ground truth
classes. Different from the fully-connected neural
networks (FCNN) that have weights connections
among all nodes, convolutional neural networks
(CNNs) have shared weights and the ability of local
feature exaction [15].

III. PHYSICS-CONSTRAINED BACKDOOR
ATTACKS

A. Threat Models

The adversary aims to achieve a high attack suc-
cess rate on modified inputs and high clean accuracy
on original inputs. We consider two scenarios. In
the first scenario, we assume that the adversary can
directly manipulate the training set, which may be
derived from direct measurements. In the second
scenario, the adversary can only change sensor mea-
surements, e.g., active and reactive power. In both
scenarios introduced above, the adversary is allowed
to change labels of fault localization. The adversary
cannot access labels in the inference phase.

B. Problem Formulation

Adversary aims to inject some pre-designed pat-
terns into a small portion of training data to af-
fect downstream tasks. In the fault localization,
an adversary injects a signal (backdoor trigger)
to training examples, resulting in the post-trained
model predicting a pre-assigned electric power line
when it sees the signal in inputs. The dataset used
for training the model consists of n data samples
with d features X ∈ Rn×d, and labels Y ∈ Rn.
The neural network training process under backdoor
attack is to solve the optimization problem below.

min
θ

L(θ; (Xb, Yt) ∪ (X2, Y2)),

s.t. Xb = h(X1; Ω; C),
(2)



where L denotes the loss function, which is the
cross-entropy in our setting. θ denotes neural net-
work parameters. X1 ∈ Rr×d and X2 ∈ R(n−r)×d

are two non-overlapped subsets of X =

[
X1

X2

]
∈

Rn×d. Y1 ∈ Rr and Y2 ∈ Rn−r are label subsets
corresponding to X1 and X2, respectively. Yt ∈ Rr

is the label set that replaces labels in Y1 with the
predetermined target label. h(·) is a mapping from
X1 to poisoned data Xb ∈ Rr×d following policy
Ω that does not consider physical constraints. h(·)
also satisfies physical constraints in a constraint set
C. After the training, θ will predict h(x; Ω; C) to
the target label for any input x.

There are many choices for X in the fault local-
ization setting. Here we will follow the same line
of [3], in which the feature vector ψ ∈ Cd (unit of
current) shown in (3) is used for X .

ψ = ψp + jψq = Y 0∆u,

ψq = Y 0
p ∆uq + Y 0

q ∆up,
(3)

where ∆u = (u
′ − u0) ∈ Cd. Variable notations

with subscripts p and q (e.g., ψp and ψq) denote
the real part and the imaginary part of the original
variable (e.g., ψ). The label set Y in the fault
localization task include m different locations and
one normal condition.

Note that in our setting, the poisoned data gener-
ated from mapping h(·) are physics-constrained by
C to guarantee the effectiveness and practicality of
the attack in PSs. Besides the Ohm’s law constraint
we introduced in (3), some common constraints of
C in the power system domain are listed as follows:

a) Power Flow Constraints: The power flow
constraints are the mapping hp(·) and hq(·) from
the voltage magnitude v and phase angle θ to the
real power p and the reactive power q.

p = hp(v,θ),q = hq(v,θ), (4)

b) Power Limit Constraints: The power, volt-
age, and current flow at all points on the system
must be maintained within equipment operating
limits to prevent damage to equipment.

g ≤ g ≤ g, (5)

where g is a general notation for line flows, genera-
tions, voltage magnitudes, and phase angles. g and
g denote the element-wise lower and upper bounds
of g.

c) Bad Data Detection Under State Estima-
tion: v and θ are usually estimated from p and
q according to the measurement Jacobian matrix
H . Therefore the perturbations δv,θ on v,θ and
the perturbations δp,q on p,q should also obey the
following equation.

δp,q = Hδv,θ, (6)

We will next show how to generate the backdoor
counterpart of ψq when the adversary has different
knowledge.

C. Backdoor Trigger Design

Given clean input feature ψq ∈ Rd, the backdoor
perturbation ∆ψq can be generated by

∆ψq = ψ′
q −ψq = (1d −m) ·ψq +m · δ −ψq

= m · δ −m · (Y 0
p ∆uq + Y 0

q ∆up)
(7)

and constrained by C, where the backdoor data ψ′
q

is encoded by the binary mask m ∈ {0, 1}d and the
element-wise perturbation δ ∈ Rd. m and δ decide
the backdoor position and magnitude, respectively.
1d represents all one vector with dimension d. · is
the element-wise product.

After changing the labels corresponding to the
modified data samples to the target label, the
classifier parameter θ is trained based on (2), in
which poisoned data-label samples are injected.
The injected backdoor signals do not affect the
model’s behavior on clean inputs but will force
the model to predict the target label if we add
the trigger (m, δ) to an input in the inference
phase. However, in most cases, the adversary cannot
directly change ψq but can only manipulate the
sensor measurements, which are voltage or complex
power. In what follows, we show how to manipulate
sensor measurements to lead to effective backdoor
perturbation.

If the adversary can only access voltage data, one
can deduce the relationship between the perturba-
tion of voltage difference ∆2u ∈ Cd with ∆ψq
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(d) Experiment 2: attack success rate (f) Experiment 3: attack success rate

Fig. 1. Experiment (1): With only one non-zero entry in the backdoor trigger and backdoor magnitude 150, the proposed
attack achieves high success rates and clean accuracy as the poisoning ratio varies from 2% - 10%; Experiment (2): With only one
non-zero entry in the backdoor trigger and poisoning ratio 10%, the attack success rate increases when the absolute value of
magnitude increases; Experiment (3): With the 1% poisoning ratio and backdoor magnitude 50, the attack success rate increases
and the clean accuracy maintains when the number of non-zero entries in the trigger increases.

according to (3), represented by ∆ψq = f1(∆
2u).

Note that we only need to perturb one of up or uq,
where u can be u0 or u

′
. The voltages also need

to satisfy (5).
An outside attacker may only access power data

s consisting of p and q and estimate u via state
estimation, power flow, and power limit. Therefore
we can obtain ∆2u from the perturbation of power
∆s based on (6), (4), and (5), represented by a
mapping ∆2u = f2(∆s).

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

The dataset used in our experiments includes
1642 data samples (80% as training data and 20%
as test data) obtained by simulating the IEEE 68-
bus power system through Power System Toolbox
(PST) [3]. The dataset is labeled into 87 classes, in
which the first 86 classes correspond to the location
of the faulted line and the 87th class represents
the normal condition. The dataset includes four
types of faults: three-phase short circuit (TP), line-
to-ground (LG), double line-to-ground (DLG), and
line-to-line (LL). Our baseline network for this
task consists of three types of classifiers, including
multiple support vector machine (MSVM) [16],
three-layer fully-connected neural network (FCNN)

[17], and convolutional neural network (CNN) with
four convolutional layers and one fully connected
layer [18].

B. Attack Results

Figures 1 (a) and (b) demonstrate the effective-
ness of the proposed attack. By choosing 150 as
the backdoor magnitude and only perturbing one
element, we can find that the attack success rates
increase and the clean accuracy remain at a similar
level for neural networks as the poisoning ratio
increases from 0% to 10%. At the point of the 10%
poisoning ratio, all three poisoned models’ average
attack success rates are higher than 98.40%, while
the clean accuracy drops are 0.04%/1.81%/9.31%
for FCNN/CNN/MSVM. The 9.31% accuracy drop
of the MSVM is probably a result of its weak
generalization ability.

Figures 1 (c) and (d) show the impact of the mag-
nitude of the backdoor trigger on clean accuracy and
attack success rate, respectively. By injecting 10%
poisoned samples into the training dataset and only
perturbing one element, we can find that with the
increase of the absolute value of trigger data, the
clean accuracy is almost unchanged, and the attack
success rate rises rapidly on FCNN and CNN. This
is because when the absolute value of the trigger



is increased, it has a greater difference from the
average clean input feature value. Therefore, it is
easier for classifiers to identify the trigger and boost
the attack success rate.

We also study the impact of the number of non-
zero entries of backdoor triggers on clean accuracy
and attack success rate. As shown in figure 1 (e) and
(f), under 1% poisoned samples and backdoor
magnitude 50, we can find that with the increase of
the number of non-zero entries, the clean accuracy
is almost unchanged, and the attack success rate
rises rapidly on FCNN, and CNN. We also compare
the proposed attack with inference phase adversarial
attacks [11, 12]. On the premise of knowing model
parameters, our results show that the attack success
rate of adversarial attacks is only 5.31% on FCNN
under the same attack power level (2.57 as the
maximum distortion on all entries).

V. CONCLUSION

For the first time, we proposed a novel physics-
constrained backdoor attack for evaluating the se-
curity of deep learning-based power system appli-
cations. The attack manipulates a small portion of
training data points by injecting backdoor signals
constrained by power system laws. In the inference
phase, these backdoor signals can mislead the deep
learning models to some target classes. The data
manipulation can even happen on sensor measure-
ments. It has been proven through simulations that
our proposed attack can achieve high attack success
rates and high clean accuracy simultaneously under
various poisoning ratios. Although this paper only
considers the deep learning-based fault localization
task, it can be naturally generalized to other appli-
cations and learning frameworks.
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