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Abstract. Deep reinforcement learning (DRL) injects vigorous vital-
ity into congestion control (CC) to efficiently utilize network capacity
for Internet communication applications. Existing methods employ a
single DRL-based agent to perform CC under Active Queue Manage-
ment (AQM) or Transmission Control Protocol (TCP) scheme. To enable
AQM and TCP to learn to work cooperatively, this paper aims to study
CC from a new perspective from the multi-agent system by leveraging
multi-agent reinforcement learning (MARL). To this end, we propose
a MARL-based Congestion Control framework, MA-CC, which enables
senders and routers to gradually learn cross-layer strategies that dynam-
ically adjust congestion window and packet drop rate. We evaluate the
proposed scheme in a typical dumbbell-like network model built on the
ns-3 simulator. The results show that MA-CC outperforms traditional
rule-based and learning-based congestion control algorithms by providing
higher throughput while maintaining low transmission latency.

Keywords: congestion control, multi-agent reinforcement learning

1 Introduction

Recently, successful applications in automatic driving, video streaming, and on-
line games require higher Quality of Service (QoS) for the data transmission
environment, which poses new challenges in the design of network protocols in
different layers to perform congestion control (CC).

There are two primary schemes devoted to controlling network congestion.
One is the transmission control protocol (TCP) CC [1], which is deployed at the
transmission layer to avoid congestion by adjusting sending rate. The other is
the active queue management (AQM) [2], which is deployed at the network layer
to control the buffer to avoid overflow [3]. The traditional TCP/AQM system is
rule-based, tuning parameters manually to adapt to network communication en-
vironments. However, since the network environment is complicated, it is difficult
for designers to obtain expert knowledge about the background to design one
rule-based mechanism for various scenarios. Therefore, an intelligent CC scheme
is required to cope with the challenges of the complex network environment.

Fortunately, reinforcement learning (RL) has shown massive potential for
real-time decision-making under dynamic environments and has been applied
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to various complex real-world tasks in recent years [4]. As a result, there is
an increasing number of researchers who leverage RL on communications and
networking [5], especially congestion control, to utilize network capacity effi-
ciently [6]. However, existing learning-based CC protocols mostly use a single
agent to perform CC under TCP/TCP scheme by adjusting the congestion win-
dow (CWND) or packet drop rate separately [7]. No work enables AQM to
cooperate efficiently and intelligently with TCP.

In this paper, we consider congestion control a multi-agent decision-making
problem and propose a novel framework called MA-CC, which makes AQM and
TCP learn to cooperate using multi-agent reinforcement learning (MARL). Pre-
cisely, MA-CC consists of two types of agents: TCP agents that dynamically
adjust CWND and AQM agents that control packet drop rate. Using a typi-
cal MARL method, the value decomposition network (VDN) algorithm [8], two
types of agents can work cooperatively to perform the cross-layer congestion con-
trol. The performance of MA-CC is evaluated in a typical dumbbell-like network
model built upon the ns-3 simulator. Compared to the existing rule-based and
learning-based CC algorithms, MA-CC achieves state-of-the-art performance in
terms of throughput and delay. The main contributions of this paper are sum-
marized as follows:

– As far as the authors are aware, it is the first time that a MARL-based ap-
proach enabling TCP and AQM to learn to cooperate is proposed to address
the cross-layer congestion control problem. Simulation results show that our
proposed MA-CC method outperforms typical rule-based and learning-based
congestion control algorithms.

– We design a typical dumbbell-like network scenario under the ns3-gym simu-
lator by modeling it as a multi-agent decision-making problem, which speeds
up research and development of MARL in the congestion control area.

2 Related Work

In this section, we first introduce some existing traditional rule-based network
protocols and then discuss the work that exploits machine learning for network-
ing protocols, primarily focusing on reinforcement learning for congestion control
mechanisms.

2.1 Rule-based Protocols

There are various rule-based protocols for solving the congestion control prob-
lem, which can be divided into end-to-end CC and network-assisted CC. End-
to-end mechanisms, usually applied to TCP CC, rely on implicit signals from
the networks, such as delay and the loss of packets. Tahoe [9] and Reno [10]
introduce three core phases in CC: slow start, congestion avoidance, and fast
recovery. Based on Reno, NewReno [1] is a classical and default congestion con-
trol protocol in use today. BBR [11] is a novel mechanism that performs well in
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TCP by continuously detecting the maximum link capacity and employing two
parameters, namely RTprop and BtlBw, to model the end-to-end network ca-
pacity. Besides, Vegas [12], fast active queue management scalable TCP (FAST)
[13], low latencies TCP [14], Timely [15] treat increasing RTT as a congestion
signal and adjust CWND to keep RTT in the desired range. Moreover, Veno
[16], Africa [17] and Google Congestion Control (GCC) [18] combine the loss
and delay signals to evaluate congestion.

Although the principle of end-to-end CC is simple to realize, it cannot iden-
tify the network environment status precisely only using those implicit signals.
For example, packet loss is not necessarily caused by congestion but may also
be caused by physical line failure, equipment failure, virus attack, routing in-
formation error, etc. To crack this nut, queue length management in network-
assisted CC mechanisms that works at the network layer has been proposed.
There is a body of research related to the AQM scheme. The RED algorithm [2]
is the default algorithm to realize router congestion control, which marks the
data packets and drops packets with a certain probability that arrive at the
router. The controlling queue delay (CoDel) algorithm [19] is a packet-sojourn
time-based AQM, which tracks the minimum queuing delay experienced by the
packets. Based on CoDel, the proportional integral controller enhanced (PIE)
algorithm [20] improves robustness by using additional parameters.

2.2 Learning-based Protocols

The dynamic and complexity of network scenarios have brought significant chal-
lenges for CC. Thus, over the past fifteen years, there has been a lot of effort
to implement intelligent congestion control solutions to improve the network
system’s performance.

In the transfer layer, Remy [21], based on the customized objective function
consisting of throughput and delay, attempts to find a mapping from a pre-
computed lookup table. Instead of using hardwired mapping, PCC[22] and PCC-
Vivace[23] leverage empirically observed performance metrics and online(convex)
optimization on machine learning techniques to choose the best sending rate
automatically. Moreover, Orca [24] combines the traditional CC algorithm Cubic
and RL to compute the CWND. Similarly, RL-TCP [7] uses RL to change the
CWND of TCP.

Besides the above mechanisms that adopt the collaboration of senders and
receivers, CC mechanisms work at the network layer. For example, QRED [25]
adjusts the maximum dropping probability according to the network situation
based on the RED scheme and the Q-learning algorithm. RL-AQM [26] also
presents a new AQM algorithm based on RL to manage the network resources to
keep the low queueing delay and the packet loss rate in different communication
situations. Although these learning-based works use RL to inject vigorous vitality
into CC, they all consider the problem from the perspective of a single agent,
which cannot make TCP and AQM cooperatively perform cross-layer congestion
control.
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3 MARL-based Congestion Control

In this section, we propose a novel MARL-based framework that uses both TCP
agents and AQM agents to dynamically and cooperatively perform cross-layer
congestion control, called MA-CC.

3.1 Overview
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Fig. 1. Architecture of the proposed MA-CC schemes.

The framework of MA-CC is illustrated in Fig. 1. Key to our design is the
insight that it is necessary to improve network performance by cooperating
AQM scheme with TCP congestion control. Therefore, we integrate a multi-
agent reinforcement-based framework with TCP and AQM design in our MA-CC
approach to perform cross-layer congestion control cooperatively.

To this end, we consider the cross-layer congestion control as a sequen-
tial decision-making problem and formulate it as a decentralized partially ob-
servable Markov decision process (Dec-POMDP), defined by a tuple ⟨(N +
M),S,A,P,O,Z, γ⟩. N is the set of TCP agents with |N | = N , M is the
set of AQM agents with |M| = M , and S is the set of states. At each time step,
each agent i ∈ (N + M) chooses an action ai from its action set Ai, and all
agents together take a common action a. The state s ∈ S transitions to the next
state s′ according to the transition function P(s′|s,a) and all agents receive a
shared reward r(s,a). Moreover, each agent only obtains a partial observation
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oi ∈ Oi according to the observation function Z(s, i) : S × (N +M) → Oi and
learns an individual policy πi(ai|oi). The objective of all agents is to maximize
the cumulative return E[

∑∞
t=0 γ

trt], where γ ∈ [0, 1] is the discount factor.
According to the above modeling, the MA-CC consists of the following ele-

ments:

– Agents: There are two types of agents, TCP agents that work at the trans-
mission layer and AQM agents that work at the network layer.

– State: It consists of the bounded histories of the network statistics and mea-
surements that an agent can obtain from the outside environment.

– Action: Under the related TCP/AQM scheme, the agent chooses an action
after perceiving the current state, according to its RL-based policy.

– Reward: It reflects the desirability of the action picked to perform the cross-
layer congestion control.

In short, two types of RL-based agents interact with each other and the
network environment. They aim to obtain high rewards to improve network
communication performance. They take actions (e.g., varying enqueue rate and
sending rate) after observing environment states (e.g., transmission delay and
throughput). Next, we describe the state, action, and reward of MA-CC in detail.

3.2 Task Description

According to the TCP/AQM scheme, we separately design the state, action, and
reward for the TCP agent (labeled as Agent1) and the AQM agent (labeled as
Agent2).

STATE: At each time step t, the system monitors the state of the network
environment and forms a statistical observation for each agent. The observation
of Agent1 is o1t = (segmentsAckedt, bytesInF lightt, RTTt), and the observation
of Agent2 is o2t = (queueLengtht, dequeueRatet, curr− QueueDelayt), which
are defined as follows:

– segmentsAcked : It is the sum of Segments Acknowledged, indicating the num-
ber of segments acknowledged by the receiver in a fixed time, which reflects
the available bandwidth and its variation.

– bytesInFlight : It is the sum of Bytes in Flight, indicating the number of
bytes that have been sent out but unacknowledged by the receiver, which is
an essential indicator of optimal Kleinrock’s point.

– RTT : It is the Round-Trip Time of a packet, indicating the amount of time
it takes for a data packet to go from the sender to the receiver and back,
which is a key element of the network latency.

– queueLength: It is the queue length of packets, indicating the remaining
buffer space.

– dequeueRate: The dequeue Rate is an important indicator of the packet
processing rate and the link’s capacity.

– currQueueDelay : It is the current queuing delay, which jointly affects the
RTT and the response speed of the communication with the propagation
delay.
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ACTION: In our formulation, the TCP agent (Agent1) is deployed at the
transmission layer, whose actions influence the sending rates. That is, at each
time step t, Agent1 adjusts the current CWND, i.e., CWNDt, to increase, de-
crease, or maintain it by three discrete actions:

CWNDt =

{
CWNDt−1 + segmentSize, a1

t = 0
max(CWNDt−1 − segmentSize, 1), a1

t = 1
CWNDt−1, a1

t = 2
(1)

where segmentSize indicates the maximum amount of TCP data sent in each
segment. As for the Agent2, under the AQM scheme, it executes an action to
adjust the buffer queue length. Specifically, at each time step interval t, Agent2

determines the probability pt of dropping an incoming packet in each flow by
two discrete actions:

pt =

{
0, a2t = 0
1, a2t = 1

(2)

where it decides the packet dropping probability happens in each flow during i
time interval.

REWARD: The control object is to get high QoS, i.e., to maximize through-
put and stability while minimizing delay and packet loss rate. Therefore, accord-
ing to the performance metrics of TCP and AQM schemes, we design the reward
functions for Agent1 and Agent2 as follows:{
r1t = a× segmentsAckedt − b× bytesInFlightt − c× RTTt

r2t = d× dequeueRatet − e× currQueueDelayt − f × queueLengtht − g × lossRatet
(3)

where (a, b, c, d, e, f, g) > 0 are predetermined constant, r1 consists of three
components to reflect loss rate, throughput, and delay, and r2 consists of four
elements to reflect throughput, delay, loss rate and stability.

3.3 Value Decomposition Network

To demonstrate the capability of the proposed MA-CC, we utilize a typical
cooperative MARL method, value decomposition network (VDN) algorithm [8],
to learn policies to choose actions and achieve cross-layer congestion control.
Specifically, our adopted VDN is a value-based MARL method, which assumes
the total Q-value of the multi-agent system. Under the centralized training with
decentralized execution (CTDE) paradigm, it can be decomposed into the sum
of the Q-values of each agent as follows:

Qtot((o
1, . . . , on), (a1, . . . , an)) ≈

n∑
i=1

Qi(oi, ai), (4)

where the individual Q-value Qi of each agent i is updated by minimizing the
td-error of Qtot, i.e.,

JQtot
= E(ot,at,rt,ot+1)∼D[Qtot(ot,at)− Q̂tot(ot,at)]

2, (5)
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Algorithm 1 The VDN method for MA-CC.

1: Randomly initialize Q network Qi
θi(o

i, ai) with weights θi for each agent i ∈ {1, 2};
initialize target network Q̄ with weights θ̄i

2: Initialize the empty replay buffer D; initialize the target replace rate τ
3: for e = 0 , M − 1 do
4: Initialize networking simulation environment
5: Receive initial observation o10 and o20
6: for t = 0, T − 1 do
7: For each agent i, sample action ai from Qi by the epsilon-greedy policy with

the exploration rate ϵ
8: Take the joint observation o = [o1, o2], joint action a = [a1, a2], joint reward

r = [r1, r2], and the joint next observation o’ = [o′1, o′2]
9: Store < o,a, r,o’ > in replay buffer D

10: Sample a minibatch B from D to update Q networks by minimizing:
EB [

∑
i Q

i
θi(o

i, ai)− γ
∑

i maxa′ Q̄i
θ̄i

(o′i, a′i)− rtot]
2

11: Update the target networks:
θ̄i ← τθi + (1− τ)θ̄i

12: end for
13: end for

where D represents the replay buffer, and Q̂tot is the td-target of the team
Q-value as follows:

Q̂tot(ot,at) = r(ot,at) + γmax
at+1

Qtot(ot+1,at+1), (6)

where o
.
= (o1, . . . , on) and a

.
= (a1, . . . , an).

The training loops are as follows. Specifically, we randomly initialize the Q
networks for Agent1 and Agent2. Besides, the empty replay buffer D is initial-
ized. Then, the training process starts. The networking simulation environment
is initialized for every training episode e, and the two types of agents perceive
their current observations o. Next, two types of agents choose actions a from Q
networks by the epsilon-greedy policy with the exploration rate ϵ, i.e.,

ai =

{
argmaxa Q

i(oi, a) if random(0, 1) ≥ ϵ
random(Ai) if random(0, 1) < ϵ

, (7)

where ϵ = 0.995|D| and |D| represents the data stored in the replay buffer D. The
rewards r are obtained by executing the actions, and the simulation environment
transfers to the next state with the next observations o’. Then, the transition
< o,a, r,o’ > is stored in the buffer D, from which a minibatch B is sampled to
update Q networks by minimizing JQtot

. The target networks are used to make
the target values change slowly to improve the stability of learning. Such an
iteration in each episode loops until the time step k reaches the maximum value
T . The pseudocode of the VDN for MA-CC is shown in Algorithm 1.
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Fig. 2. The dumbbell-shaped network topology with N senders, N routers and O re-
ceivers simulation scenarios was implemented in the ns-3 simulator. We set the Bot-
tleneck Link bandwidth as 30Mbps, delay as 100ms, packet error rate as 0.03%, and
Access Link bandwidth as 100Mbps, delay as 20ms.

4 Evaluation

In this section, we first give the experimental setup and then elaborate perfor-
mance of the MA-CC and make comparisons with other rule-based and learning-
based congestion control schemes. Finally, we provide a brief analysis of the
simulation results.

4.1 Experimental Setup

Recently, the ns-3 simulator and OpenAI Gym are combined to produce a bench-
marking simulation system, named ns3-gym [27], for promoting the intersection
of reinforcement learning and networking research. Since ns3-gym simplifies feed-
ing the RL with the data from the network system, we build the test scenario
and construct experiments in ns3-gym. Specifically, the test network topology
built in ns3-gym is indicated in Fig. 2, which represents a natural and com-
plex network environment where multiple flows sent by various devices compete
for the Bottleneck link’s bandwidth. Furthermore, since we consider congestion
control a multi-agent decision-making problem, the TCP and AQM schemes in
ns3-gym are modified under MA-CC to connect with MARL.
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Table 1. Simulation parameters

Symbol Parameter Name Parameter Value

M Number of TCP agent and sender 3

N Number of AQM agent and router 2

γ Discount factor 0.9

α Learning rate 0.01

τ Target replace rate 0.05

ϵ Initial exploration rate 0.9

tstep Step duration 0.2 seconds

- Queue size 385 packets

4.2 Performance Analysis

Using the VDN algorithm, we trained universal neural networks for each agent
and evaluated them online. The discount factor γ is set as 0.9, the initial explo-
ration rate ϵ is set as 0.9, and the target replaces rate τ is set as 0.05. Simula-
tion parameters used in the implementation are summarized in Table 1. Neural
network for this task is two fully connected layers with two ReLU activation
functions. We train the neural network with ten iterations and 1000 episodes
for each iteration. To consolidate the proposed MA-CC, we choose well-known
rule-based and learning-based protocols at two layers to make a comprehensive
comparison, including NewReno, BBR, RED, CoDel, RL-TCP, and RL-AQM.

We consider several critical parameters as our performance metrics, including
throughput, delay (RTT), stability of CWND, and queue length. Throughput
counts the amount of data successfully transmitted in a given unit of time, mea-
sured in Mbps. RTT measures packet transmission delay, which is the amount of
time it takes for a signal to be sent, plus the amount of time it takes to acknowl-
edge that signal has been received. The stability of CWND and queue length
calculates the mean absolute deviation (MAD) of CWND and queue in a given
time interval according to:

d =

∑n
i=1|xi−x|

n
(8)

The overall simulation results are shown in Fig. 3(A) to Fig. 3(B), where the
timeline figures show the performance change of the throughput and delay in the
first, fifth, and tenth training episode, respectively. The presence of throughput
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Fig. 4. Comparison results: (A) Average throughput comparisons, (B) Average RTT
comparisons, (C) Mean Absolute Deviation of CWND comparisons, and (D) Mean
Absolute Deviation of queue length comparisons.

incline and delay decline with training episode increase suggests that two types
of agents are gradually learning how to improve performance. MA-CC does not
affect congestion control in the first training episode. However, after training
several iterations, MA-CC can learn how to improve throughput and reduce
delay, and its performance is expected to exceed the traditional CC algorithms.
In addition, one can see that the performance of MA-CC tends to be stable
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after ten training sessions, which indicates the strong learning capability of the
MARL-based CC algorithm in the network communication environment.

To further demonstrate the performance of MA-CC, by considering the differ-
ent trade-offs between latency and throughput of existing schemes, we compare
MA-CC with other six AQM and TCP combination protocols, including RED
with BBR, CoDel with BBR, RED with TCP-RL, AQM-RL with NewReno,
and AQM-RL with TCP-RL. The comparison results are summarized in Fig. 4,
including the average throughput, average RTT, mean absolute deviation of
CWND, and mean absolute deviation of queue length. From Fig. 4(A), one can
see that the average throughput of MA-CC is up to 28459 Kbps while that of
the combination of RED and TCP-RL algorithms is up to 26384 Kbps. As for
other combinations, their average throughput is lower than 15000 Kbps. From
Fig. 4(B), one can see that the average RTT of MA-CC is 287 milliseconds. While
that of the combination of AQM-RL and TCP-RL algorithms is similar lower to
294 milliseconds. As for other combinations, their average RTT is higher than 300
milliseconds. Note that the total RTT when empty is 2∗ (100+2∗20) = 280ms.
Among these results, one can see that MA-CC achieves both higher throughput
and lower latency on average than baselines.

Moreover, from Fig. 4(C), one can see that the MAD of CWND of MA-CC is
low to 242 while that of the combination of RL-AQM and NewReno algorithms
is 607. As for other combinations, their MAD of CWND is higher than 17000;
and from Fig. 4(D), the MAD of queue length of MA-CC is low to 2 while that of
the combination of other algorithms is higher than 160 Instead of other schemes
that are too fluctuating to remain stable, MA-CC keeps the MAN of CWND
and queue length at a relatively low level. This reflects that MA-CC could learn
a better control behavior than baselines to maintain more stable performance.

5 Conclusion

In this paper, we novelty formulate a multi-agent decision-making framework to
improve congestion control performance and propose an innovative framework
with multi-agent reinforcement learning called MA-CC. MA-CC enables AQM
and TCP to learn to cooperate at different network layers to configure a suit-
able CWND and packet drop rate dynamically. By comparing MA-CC with the
combination of well-known schemes, our evaluation results in the ns-3 simulator
show that with limited training, MA-CC can utilize the network resources effi-
ciently and achieve more stability, higher throughput, and lower latency network
communication performance.

In the future, we will implement MA-CC in a real-world communication
environment. Besides, we are trying to extend the work of this paper in the
aspect of other networking scenarios. We are also interested in exploring new
multi-agent reinforcement learning methods suitable for networking and com-
munications based on our proposed MA-CC framework.
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